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Laser ion acceleration:  
Target Normal Sheath Acceleration (TNSA) 

10 – 50 µm


  Laser pulse creates pre-plasma 
  Main pulse accelerates electrons to MeV-energies 
  Electron sheath generates electric field on rear side 
  Transverse spread of sheath   
  Field ionization and ion acceleration in normal direction 

Ez ≈ 1012 V/m
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   spectrum 

M.S. et al., NIM A 577, 186 (2007); M.S. et al., Phys. Plasmas 15, 053101 (2008), F. Nürnberg, M.S.. Et al., Rev. Sci. Instrum. 80, 033301 (2009) 

η ~ 1-5 %


  opening angle 

   source size   transverse phase space 

Target Normal Sheath Acceleration (TNSA): 
Typical beam parameters 



Comparison to other laser-
acceleration mechanisms 

  Why do we investigate TNSA, and not other (new) acceleration 
mechanisms? 
  TNSA always works, no special target preparation necessary 
  High particle number, high energies (>50MeV w/ ZPW), very laminar beam 
  Optimum for medium-contrast laser such as ZPW 
  Potential for ion radiography/deflectrometry on Z 

  Break-Out Afterburner/enhanced TNSA/RPA1,2,3:  
  requires ultrahigh contrast, ultrathin foils, (circular polarization) 
  ion beam profile unknown (only two experiments published) 

  Shock-acceleration4:  
  High flux, strongly distorted beam profile 

  Laser-induced Fusion (OMEGA)5:  
  Mono-energetic @ 15 MeV 

  Skin-Layer Ponderomotive Acceleration (SLPA)6: 
   high number, but low energy 

1: L. Yin et al., Laser Part. Beams 24, 291 (2006) 
2: A. Henig et al., Phys. Rev. Lett. 103, 045002 (2009) 
3: A. Henig et al., Phys. Rev. Lett. 103, 245003 (2009). 
4: A. Henig et al., Phys. Rev. Lett. 102, 095002 (2009). 
5: C.K. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006). 
6: J. Badziak et al., PPCF 46, B541 (2004) 
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Experimental setup 
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100 TW target area 
  laser parameters 

  E = 100 J ± 10%, tp = 0.7 ps, λ = (1.054 ± 3) nm 

  focal spot: 5.7 µm FWHM (diff. limit: 5.66 µm) 

  30% of energy in FWHM 

  45 degree angle of incidence 

  I = 1.5 x 1020 W/cm2 

  targets:  

  copper or tin 

(250 µm)2 area,  
25 µm thick 
“mass-reduced targets“ 

laser 
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Proton acceleration experiments 

0.25 mm x 0.25 mm x 25µm Cu 
on a 7 µm carbon fiber 
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p-polarization 
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  p-polarization 

target plane 

E-field vector 

  s-polarization  

E-field vector 

target plane 



Radiochromic Film Imaging Spectroscopy 

protons 
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F. Nürnberg, M.S. et al., Rev. Sci. Instrum. 80, 033301 (2009) 

  RCF stack measures: 

  beam profile 

  opening angle 

  spectrum 

  cut-off energy 

  energy conversion efficiency 





  Maximum energy depends on polarization: 
  s-pol.: Emax = 35 MeV 
  p-pol.: Emax = 50 MeV 

  Reduction of target mass and p-pol.:  
  Emax >65 MeV! 

  Comparison: 67 MeV with flat-top-cone targets 
at 200 TW TRIDENT laser (S. Gaillard, T. Kluge et 
al., M.S., submitted) 

Result: >65 MeV with 150 TW! 
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  Energy conversion efficiencies: 
  flat foil, s-pol.1: 1 % 
  flat foil, p-pol.: 3-4 % 
  mass-reduced target, p-pol.: ~7 %   

  Energy-dependent divergence is similar for all shots 

1D.S. Hey et al., Phys. Plasmas 16, 123108 (2009) 



Energy spectra 

Energy spectra closely follow quasi-neutral 
expansion1: 

1P. Mora, Phys. Rev. Lett. 90, 185002 (2003) 
2M. Allen et al., Phys. Rev. Lett. 93, 265004 (2004) 

Flat foil (FF), s-polarized: 
N0 = 1.8 x 1013 
kBTe = 0.76 MeV 

Flat foil, p-polarized: 
N0 = 1.8 x 1013 
kBTe = 1.4 MeV 

Mass-reduced target (MRT), p-polarized: 
N0 = 6 x 1013 
kBTe = 1.4 MeV 

kBTe from ponderomotive potential: 5 MeV 
Ntotal on MRT rear surface2: ~ 6 x 1013 



Higher energies with mass-reduced targets 

  Possible explanations: 
  Transverse re-circulation inside foils (see Ref. 1) 

•  confines hot electron population 
•  Ref. 1: results in hotter, denser, and more homogeneous sheath  
•  hotter: kBTe equal, not confirmed 
•  denser: higher N0, confirmed 
•  more homogenous sheath  lower divergence: not confirmed  

  Different pre-plasma conditions 
•  MRT could be more efficiently pre-heated by pre-pulse 
•  larger scale length pre-plasma could enhance absorption 
•  can be investigated numerically 
•  see talk by Alex Arefiev 

  Something new ?! 

  Fully explicit 2D PIC-simulations and analytical work are 
on-going right now 

1S. Buffechoux et al., Phys. Rev. Lett. 105, 015005 (2010) 
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Concept 

This work has been performed in  
collaboration with TU Darmstadt, Germany 

flat foil: divergent beam 

hemi: focusing, then divergent beam 

hemi + cone: potentially collimated beam 

“APOLLO” target 
(Autoeletric Proton beam Optimization  
with a reLativistic Lens Optics) 
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2D PIC simulations: real space 
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This work has been performed in  
collaboration with TU Darmstadt, Germany 



2D PIC simulations: phase-space 
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flat foil APOLLO 

Differences for APOLLO:  
  collimated beam in center 
  large-divergent, low-energy part 
  lower Emax 

This work has been performed in  
collaboration with TU Darmstadt, Germany 



Experimental results 

35
0 
µm

 

250 µm ∅ 20 – 100 µm 

flat foil: 
•  Emax = 45-50 MeV 
•  homogeneous profile 
•  decreasing divergence w/ energy 

APOLLO: 
•  Emax = 30 MeV 
•  collimated feature in beam 
•  large-divergent low-E protons 
•  slight poynting error -> alignment 
error 
•  stronger electron signal 

90% Emax 

30% Emax 

90% Emax 

30% Emax 

flat foil APOLLO 
Conclusions: 
•  APOLLO can guide protons 
•  lower Emax 
•  higher low-energy proton yield 
•  higher proton number on axis 
•  absolute numbers TBD 

electron 
signal 

This work has been performed in  
collaboration with TU Darmstadt, Germany 
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•  New LDRD starting October 2010  

•  Use Z-Petawatt to generate ion beams in Z center section 

•  Ion radiography/deflectometry: 
•  provides electromagnetic field mapping 
•  high spatiotemporal resolution (8 µm measured @ SNL)  

•  Proposed scenarios:  
•  measure return can B-field 
•  instabilities in ICF capsule compression1 

•  Compressed magnetic field probing (MagLIF2) 
•  Astrophysical jet probing (JetPAC3)  

•  3D particle ray-tracing needs to be developed  
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Ni meshes: 
d 8.6 µm 
s 34 µm 

1Rygg et al., Science 319, 1223 (2008) 
2Slutz et al., PoP 17, 056303 (2010) 
3A. Frank, Resolving the Issue, proposal submitted to U.S. DoE (2008) 



J. Schwarz et al., PRST-AB 13, 041001 (2010) 

J. Fuchs et al., personal communication; M. Nakatsutsumi et al., Optics Letters 35, 2314 (2010) 

Ion radiography/deflectometry on Z 

•  Application on Z requires 
development of sacrificial focusing 
plasma mirror 

•  Experiments planned this year 

Modified 25 keV x-ray backlighter setup 



Conclusions 
  Proton acceleration with mass-reduced targets: 

  above 60 MeV energy 
  about 2 x higher conversion efficiency 
  higher proton number 

  APOLLO targets: 
  divergence control for higher energies 
  high number of low-energy protons 
  reduced maximum energy 
  good news for Proton Fast Ignition Concept 

  Proton radiography on Z: 
  new experimental capability development 
  requires focusing plasma mirrors 
  can provide high-quality electromagnetic field  
measurements on Z 


